The uncertainty of a measurement is stated by giving a range of values which are likely to enclose the true value. This may be denoted by error bars on a graph, or as value ± uncertainty, or as decimal fraction(uncertainty). The latter concise notation is used for example by IUPAC in stating the atomic mass of elements. There, 1.00794(7) stands for 1.00794 ± 0.00007. Often, the uncertainty of a measurement is found by repeating the measurement enough times to get a good estimate of the standard deviation of the values. Then, any single value has an uncertainty equal to the standard deviation. However, if the values are averaged, then the mean measurement value has a much smaller uncertainty, equal to the standard error of the mean, which is the standard deviation divided by the square root of the number of measurements. When the uncertainty represents the standard error of the measurement, then about 68.2% of the time, the true value of the measured quantity falls within the stated uncertainty range. For example, it is likely that for 31.8% of the atomic mass values given on the list of elements by atomic mass, the true value lies outside of the stated range. If the width of the interval is doubled, then probably only 4.6% of the true values lie outside the doubled interval, and if the width is tripled, probably only 0.3% lie outside. These values follow from the properties of the normal distribution, and they apply only if the measurement process produces normally distributed errors. In that case, the quoted standard errors are easily converted to 68.2% (\ one sigma\ ), 95.4% (\ two sigma\ ), or 99.7% (\ three sigma\ ) confidence intervals.
http://en.wikipedia.org/wiki/Uncertainty (No Longer Available)
Fuzzy
Stochastic
Certainty
Keith Reynolds
2008-06-06T00:00:00Z ^^ http://www.w3.org/2001/XMLSchema#dateTime
Graphical Ontology Browser
- Click on a node to jump to the content of that node
- Pan to see the rest of the graph
- Scroll the mousewheel up and down to zoom in and out
- Rearrange the nodes in the graph by dragging a node to a different position